
Out-of-plane dynamic analysis of beams with arbitrarily
varying curvature and cross-section by dynamic sti�ness

matrix method

C.S. Huanga,*, Y.P. Tsengb, S.H. Changb, C.L. Hungb

aNational Center for Research on Earthquake Engineering, 200, Sec. 3, Hsinhai Rd., Taipei, 106 Taiwan
bDepartment of Civil Engineering, Tamkang University, Tamsui, 25137 Taiwan

Received 6 August 1998; in revised form 5 January 1999

Abstract

The ®rst known dynamic sti�ness matrix for noncircular curved beams with variable cross-section is developed,
with which an exact solution of the out-of-plane free vibration of this type of beam is derived. By using the Laplace
transform technique and the developed dynamic sti�ness matrix and equivalent nodal force vector, the highly
accurate dynamic responses, including the stress resultants, of the curved beams subjected to various types of

loading can be easily obtained. The dynamic sti�ness matrix and equivalent nodal force vector are derived based on
the general series solution of the di�erential equations for the out-of-plane motion of the curved beams with
arbitrary shapes and cross sections. The validity of the present solution for free vibration is demonstrated through

comparison with published data. The accuracy of the present solution for transient response is also con®rmed
through comparison with the modal superposition solution for a simply-supported circular beam subjected to a
moving load. With the proposed solution, both the free vibration and forced vibration of non-uniform parabolic

curved beams with various ratios of rise to span are carried out. Nondimensional frequency parameters for the ®rst
®ve modes are presented in graphic form over a range of rise-to-span ratios (0.05 R h/l R 0.75) with di�erent
variations of the cross-section. Dynamic responses of the ®xed±®xed parabolic curved beam subjected to a

rectangular pulse are also presented for di�erent rise-to-span ratios. # 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Like straight beams, curved beams (or arches) have found wide application in various industrial ®elds,
such as spring design and aircraft structures in mechanical engineering, and the design of arch bridges
and long-span roof in civil engineering. Research on the out-of-plane motion of curved beams (including
rings) can be traced back to the nineteenth century (Michell, 1890; Love, 1892). As shown in the survey
articles by Wagner and Ramamurti (1977), Markus and Nanasi (1981), Laura and Maurizi (1987), and
Chidamparam and Leissa (1993), more than one hundred papers were devoted to studying the out-of-
plane dynamic behaviors of planar curved beams. A number of curved elements have also been
developed for the ®nite element approach (e.g., Choi and Lim, 1993; Koziey and Mirza, 1994; Litewka
and Rakowski, 1997).

Various vibration problems for circular curved beams have been analyzed in the literature. Only a few
investigated the dynamic responses for noncircular curved beams with variable cross sections even
though this type of curved beam is quite often applied in civil engineering projects, such as arch bridges
or elevated bridges. Irie et al. (1980a) appear to have been the ®rst to investigate free vibrations of
circular curved beams with variable cross-sections, using transfer matrix approach. Suzuki et al. (1983)
developed a series solution for free vibrations of noncircular curved beams having variable cross-
sections, in which symmetric modes and anti-symmetric modes were separately considered. Then, Suzuki
et al. (1986) used the modal superposition technique to investigate the impulse responses of such curved
beams. In the work of Suzuki et al. (1983, 1986), the e�ects of shear deformation and rotary inertia
were neglected. Kawakami et al. (1995) proposed a numerical solution based on a discrete Green
function and a numerical integral method for free vibrations of curved beams with variable cross
sections. Apparently, the research work so far done on the dynamic responses of planar curved beams
with variable cross-sections is not su�cient.

In this paper, we present a systematic approach to investigate the linear out-of-plane dynamic
responses of planar curved beams with arbitrary shapes and cross-sections, which extends our work on
uniform curved beams (Huang et al., 1998a) and in-plane dynamic responses (Huang et al., 1998b). In
this study, the e�ects of shear deformation and rotary inertia are taken into account. The proposed
approach combines the Laplace transform and dynamic sti�ness method. The crucial step in this
approach is to establish the dynamic sti�ness matrix for curved beams with arbitrary shapes and cross
sections, which is accomplished by using the Frobenius method (Hildebrand, 1976) to develop the series
solution for such curved beams in terms of polynomials. This has not been done before.

By using the simple relationship between the transform parameters in Laplace transform and Fourier
transform, one can easily transform the solution in the Laplace domain into the frequency domain.
Then, the exact solution for the out-of-plane free vibration of a curved beam can be established. This
exact solution is better than the series solution proposed by Suzuki et al. (1983) in two respects. The
solutions for symmetric modes and anti-symmetric modes are not formulated separately, so our solution
is not limited to problems with symmetry. Since the concept of dynamic sti�ness matrix is adopted,
convergent results are always guaranteed by increasing the number of solution terms or the number of
elements. In order to obtain accurate results Suzuki et al. (1983) should use very high order polynomial
terms, which frequently leads to numerical di�culties.

The use of Laplace transform makes it easy to obtain very accurate results for the transient responses
without knowledge of the modal properties required by the normal mode method. Furthermore, the use
of an analytical solution in the Laplace domain leads to high accuracy of the responses for the stress
resultants, which usually requires hundreds of modes in the normal mode approach (Hung, 1998).
Furthermore, in solving dynamic problems subjected to support excitations, which are often considered
in earthquake engineering, no so called quasi-static solution as required in the normal mode approach is
needed in the present solution.
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To demonstrate the validity of our proposed solution for free vibration problems, a convergence
study on a semi-elliptic curved beam with variable cross-sections is presented. The results are compared
with those provided by Suzuki et al. (1986). Some numerical results for ®xed±®xed parabolic arches with
variable cross-sections, which are often designed for arch bridges, are given in graphic charts for a wide
range of rise-to-span ratios. The proposed solution is compared with the modal superposition solution
for a simply-supported circular curved beam subjected to a moving loading to exhibit the high accuracy
of the present solution for transient analysis. Finally, a set of variable cross-section parabolic arches
with various rise-to-span ratios subjected to a rectangular impulse are studied.

2. Mathematical formulation and solutions

Fig. 1 shows the adopted coordinate and a curved element where the bending moment, shear force,
and twisting moment on the cross-section are denoted by Mz, Q, and Mt, respectively. The m, z and f
represent the out-of-plane displacement, the bending rotation, and the twist angle of the centroidal axis,
respectively. The positive directions for displacement components and stress resultants are also given in
Fig. 1.

The dynamic equilibrium equations derived by using Hamilton's principle (e.g., Rao, 1971) in terms
of the arc length coordinate S are as follows:

@Q

@S
� rA �u ÿ Pp, �1a�

ÿ@Mz

@S
� Mt

R
�Q � rIz �z , �1b�

@Mt

@S
� Mz

R
� rJ � �f , �1c�

where A and J �, respectively, are the area and polar moment of the cross section, r is the mass per unit
volume, Iz is the second moment of the area of the cross section about the z-axis, and Pp is the external
load. The derivative with respect to time is denoted by a dot.

The relationships of forces to displacements of a curved element are given by (e.g., Rao, 1971;
Chidamparam and Leissa, 1993)

Q � kGA

�
@u

@S
ÿ z

�
, �2a�

Fig. 1. Curved beam co-ordinates and displacement and stress resultants for out-of-plane motion.
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Mz � ÿEIz
�
@z
@S
� f

R

�
, �2b�

Mt � C

�
@f
@S
ÿ z

R

�
, �2c�

where E and G are the Young's modulus and shear modulus, and k and C are the shear coe�cient and
torsional sti�ness coe�cient of the cross section, respectively. The shear coe�cient and torsional sti�ness
coe�cient are dependent on the shape of the cross-section (Cowper, 1966; Timoshenko and Goodier,
1970). The e�ect of shear deformation is taken into account herein.

Substituting Eqs. (2a), (2b) and (2c) into the equilibrium equations (Eqs. (1a), (1b) and (1c)), and
transforming the S coordinate into the Cartesian coordinate, x (see Fig. 2), one obtains the governing
equation for the out-of-plane motion of a noncircular curved beam with a varying cross-section in a
nondimensional form, as follows (Chang, 1997):

�u0�
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x
�
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�A

!
�u 0 ÿ 1

x
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�
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2 �Cx2

fÿ
 

1
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�Iz
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2
ÿ
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!
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�f , �3c�

where the primes denote the derivatives with respect to �x . The following nondimensional quantities are
introduced in Eqs. (3a), (3b) and (3c):

Fig. 2. Con®guration of a parabolic arch with a variable cross-section.
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L
, �4�

where L is a representative length of the curved beam under consideration. The subscript `0' in Eq. (4)
denotes the quantities at a reference cross-section, which is chosen as the middle cross-section in the
following analysis. Eqs. (3a), (3b) and (3c) are a set of second order partial di�erential equations with
non-constant coe�cients.

To formulate the solution for Eqs. (3a), (3b) and (3c), the Laplace transform is carried out on these
equations, and zero initial conditions are assumed. Then, the non-constant coe�cients in Eqs. (3a), (3b)
and (3c) are expressed in terms of their own Taylor's expansion series, which are given as:
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In terms of polynomials, expressing the loading function Pp� �x ,t� and the displacement components
�u� �x ,t�, x� �x ,t� and f� �x ,t� after the Laplace transform that are, respectively, denoted as ~Pp� �x ,~s�, ~�U � �x ,~s�,
~Z � �x ,~s � and ~F � �x ,~s�, where ~s is the Laplace transform parameter, one obtains

L

El21A0
�Ax2

~Pp �
XK
k�0

pk� �x ÿ Z�k, �6�
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~�U �
XJ
j�0

Aj� �x ÿ Z� j, ~Z �
XJ
j�0

Bj� �x ÿ Z� j, ~F �
XJ
j�0

Dj� �x ÿ Z� j: �7�

It should be noted that the coe�cients of the polynomials in Eqs. (6) and (7) are dependent on ~s . As
long as the loading function and the geometry of the curved beam under consideration are de®ned, their
Taylor's expansion series given in Eqs. (5) and (6) can be obtained with the aid of a symbolic
computation system such as ``Mathematica'', ``MACSYMA'' or ``MATLAB''.

Substituting Eqs. (5)±(7) into the Laplace transformed equations (Eqs. (3a), (3b) and (3c)), one can
establish the following recursive formulas for the coe�cients for the displacement components given in
Eq. (7):

Aj�2 � ÿ1
� j� 1�� j� 2�
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ÿ
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r~s2L2

E
djÿk
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Bk ÿ d�jÿkDk

#
�8b�

Dj�2 � ÿ1
� j� 1�� j� 2�

Xj
k�0

"
ÿ�k� 1� �c jÿkBk�1 � �k� 1� �ajÿkDk�1 � �djÿkBk

ÿ
 

�bjÿk � rL2l23 ~s2

El22
�f jÿk

!
Dk

#
, �8c�

where j = 0, 1, 2, 3,....
The recursive formulae relate the coe�cients for jr2 in Eq. (7) to A0, A1, B0, B1, D0 and D1. As a

result, the solution given in Eq. (7) can be further modi®ed and simply expressed as

~�U � �x � � A0
~�u 0� �x � � A1

~�u 1� �x� � B0
~�u 2� �x � � B1

~�u 3� �x � �D0
~�u 4� �x � �D1

~�u 5� �x � � ~�u p� �x �, �9a�

~Z � �x � � A0
~z0� �x � � A1

~z1� �x � � B0
~z2� �x� � B1

~z3� �x � �D0
~z4� �x � �D1

~z5� �x� � ~zp� �x� �9b�

~F � �x � � A0
~f0� �x � � A1

~f1� �x � � B0
~f2� �x� � B1

~f3� �x � �D0
~f4� �x � �D1

~f5� �x� � ~fp� �x �, �9c�

where ~�u i, ~z i and ~f i (i= 1, 2,..., 5, and p ) are polynomial functions with coe�cients determined from
Eqs. (8a), (8b) and (8c). The ®rst six terms in each of Eqs. (9a), (9b) and (9c) construct the set of the
general homogeneous solutions for Eqs. (3a), (3b) and (3c) in the Laplace domain, whereas the last term
represents the particular solution.

(8a)
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3. Dynamic sti�ness matrix and loading vector

If one directly applies the solution form given in Eqs. (9a), (9b) and (9c), one needs to use very high
order polynomials to obtain accurate results. This seems to be theoretically feasible, but numerical
di�culties are often encountered, as reported by Suzuki et al. (1983). Furthermore, one may also face a
theoretically fatal limit which the convergent radius of the solution given by Eqs. (9a), (9b) and (9c)
may not cover the whole space domain under consideration. To overcome these drawbacks and make
the solution more applicable to a wide class of problems, the concept of the dynamic sti�ness matrix is
adopted here.

By using Eqs. (9a), (9b) and (9c), the nodal displacement components of a curved element, say the n-
th element, (see Fig. 3) can be expressed as

8>>>>>>><>>>>>>>:

~U 0
~Z0
~F0
~U 1
~Z1
~F1

9>>>>>>>=>>>>>>>;
n

� � ~N �n

8>>>>>><>>>>>>:

A0

A1

B0

B1

D0

D1

9>>>>>>=>>>>>>;
�

8>>>>>>>>>>><>>>>>>>>>>>:

~up� �xn�
~zp� �xn�
~fp� �xn�

~up� �xn�1�
~zp� �xn�1�
~fp� �xn�1�

9>>>>>>>>>>>=>>>>>>>>>>>;
, �10�

where

� ~N �n �
24 � ~b �j �x� �x n

� ~b �j �x� �x n�1

35
n

, �11a�

� ~b � �
24 ~u0� �x � ~u1� �x� ~u2� �x � ~u3� �x � ~u4� �x � ~u5� �x�

~z0� �x � ~z1� �x � ~z2� �x � ~z3� �x� ~z4� �x � ~z5� �x �
~f0� �x � ~f1� �x � ~f2� �x � ~f3� �x� ~f4� �x � ~f5� �x �

35: �11b�

It should be noted that real displacement, instead of nondimensional displacement, is used in Eq. (10)
such that ~ui � L ~�u (i = 0, 1, 2,..., 5, and p ).

Using Eqs. (2a), (2b) and (2c) and Eqs. (10), (11a) and (11b), one can express the nodal stress
resultants in terms of nodal displacement components in the Laplace domain as

Fig. 3. Positive displacement and stress resultant for the n-th element.
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8>>>>>>><>>>>>>>:

~Q 0
~Mz0
~Mt0
~Q 1
~Mz1
~Mt1

9>>>>>>>=>>>>>>>;
n

� � ~k �n

8>>>>>>><>>>>>>>:

~U 0
~Z0
~F0
~U 1
~Z1
~F1

9>>>>>>>=>>>>>>>;
n

�
n

~fp

o
n
, �12�

where

� ~k �n � �EIz0�
ÿ� ~G1�n � � ~G2�n

�� ~N �ÿ1n , �13a�
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� ÿ� ~k �n
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���
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���
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n

���
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���
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9>>=>>;, �13b�
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����
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@ �x
� ~b �n

����
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377775, �13c�

� ~G2�n � �L2�n

24 �~a �n �� �x� �x n

�~a �n
��

�x� �x n�1

35, �13d�

�~a �n �
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~f0� �x � ~f1� �x � ~f2� �x� ~f3� �x � ~f4� �x � ~f5� �x �
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�
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L

"
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~fp� �x �
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ÿl
2
2
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L

"
x� �x � ~fp
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#

9>>>>>>>>>>>=>>>>>>>>>>>;
n

: �13g�

The matrices [L1]n and [L2]n are diagonal with the diagonal vectors equal to
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L

!

and  
l21
g20

�A � �xn�,
�Iz� �xn�
�R � �xn�L

,
l22 �C � �xn�
�R � �xn�L

, ÿl
2
1

g20
�A � �xn�1�, ÿ

�Iz� �xn�1�
�R � �xn�1�L

, ÿl
2
2

�C � �xn�1�
�R � �xn�1�L

!
,

respectively. It should be mentioned that � ~k �n is the so-called dynamic sti�ness matrix for the n-th
curved element, which includes the e�ect of inertia forces, and f ~fpgn is the equivalent nodal external
loading, which is transformed from the distributed load in an element.

Like the ®nite element approach, the continuity conditions between adjacent elements result in
assembling the dynamic sti�ness matrices for all the elements to form a global dynamic matrix, � ~K �,
such that

� ~K �f ~Ug � f ~Fg, �14�
where f ~Ug is the nodal displacement vector for the curved beam system under consideration while {F } is
the equivalent external loading vector applied at the ends of each element. Then, the unknown nodal
displacement components in the Laplace domain can be obtained by solving the set of linear algebraic
equations given by Eq. (14).

A convergent solution is always guaranteed, which can be obtained either by increasing the number of
solution terms, J in Eq. (7), and the number of terms for geometric functions and loading function, K in
Eqs. (5) and (6), or by increasing the number of elements. This is similar to combining h- and p-
re®nement in the ®nite element approach. It should be noted that each polynomial function in Eqs. (9a),
(9b) and (9c) includes J polynomial terms. In the present procedure, the number of J for each element is
determined by controlling the relative and the absolute errors for each polynomial function in Eqs. (9a),
(9b) and (9c). The number of elements is controlled by the magnitude ratios of a polynomial function to
each of its polynomial terms for each element. When the minimum ratio is less than 10ÿ8, the element is
re®ned in order to avoid loss of accuracy in the numerical operation by using double precision (15 or 16
signi®cant digits). If one uses double precision on a super-computer, one can use a control value much
smaller than 10ÿ8.

4. Free vibration analysis

To perform a free vibration analysis, one can replace the Laplace transform parameter ~s in the
previous solution formulation with io, where i � �������ÿ1p

, and neglect the particular solution parts.
Consequently, one can rewrite Eq. (14) as" �

~Kuu

� �
~Kub

��
~Kbu

� �
~Kbb

� # ( � ~Uu

	�
~Ub

	 ) � � f0g� ~Fb

	 �, �15�

where f ~Uug corresponds to the unknown vibratory displacement components at the nodal points, f ~Ubg is
the prescribed vibratory displacement components on the boundaries, and f ~Fbg is the unknown
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vibratory stress resultants on the displacement prescribed boundaries. Because f ~Ubg is usually a zero
vector in a free vibration problem, the natural frequencies for the curved beams are those o's resulting
in the zero determinant of � ~Kuu�. It should be noted that the solution is an exact solution because no
approximation is made.

4.1. Convergence study

In order to assess the validity of the proposed solution, a convergence study was carried out on a
®xed±®xed semi-elliptic curved beam with a varying cross-section, and a comparison was made with the
results given by Suzuki et al. (1986). The curved beam under consideration, which has a circular cross-
section, is shown in Fig. 4. The variation of the diameter of the cross-section is described by
d(c )=dc(1+0.2c 2), where dc is the diameter at the middle and is set equal to 6 meters, and c is the
angle between the tangent at the eccentric angle of an ellipse (y ) equal to zero and that at any point on
the center line (see Fig. 4). Poisson's ratio was set equal to 0.3 for all numerical results shown in this
paper.

Tables 1 and 2 list the ®rst six natural frequency parameters, o 2L 4 (rA0/EI0)
1/4, obtained by using 8

and 16 elements, respectively, with di�erent numbers of solution terms, J in Eq. (7), and geometric
terms, K in Eq. (5). It should be noted that L is set equal to

���������������
a2 � b2
p

. Indeed, the data show that the
convergent results can be obtained by increasing the number of elements or by increasing K and J at the
same time. As expected, a larger number of elements cooperating with smaller numbers of K and J can
provide a convergent solution. Comparing these with the results given by Suzuki et al. (1986) reveals
that our convergent results are slightly smaller than theirs, which is mainly because the e�ects of shear
deformation and rotary inertia were neglected in their work.

Table 3 shows a comparison between the convergent results from the proposed solution and those
provided by Irie et al. (1980b) for a ®xed±®xed circular beam with a uniform cross-section. The circular
beam has an opening angle equal to 808 and

���������������
AR2=Iz

p
� 20. Solving the same type of governing

equations, our results were obtained by setting twenty solution terms and one geometric term with two
elements while Irie et al. (1980b) used the transfer matrix method. These results are exactly the same if
four signi®cant ®gures are considered.

4.2. Numerical results

To ®ll the void in the available data on a parabolic arch with a varying cross-section, we studied
®xed±®xed parabolic arches with varying height of the rectangular cross-section (see Fig. 2) such that

Fig. 4. Sketch of a semi-elliptic curved beam with a varying cross-section.
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IX�x� � IX0�
1ÿ �1ÿ Z�� jxÿ l1j

l1

�
cos cx

, �16�

where l1 is half of the span length l and cx is the angle between the tangent at any point on the
centroidal axis and a horizontal axis. The value of the constant Z � is between 0 and 1, with larger Z �

indicating smaller variation of the cross-section from the middle to the ends. This type of parabolic arch
is designed quite often in civil engineering projects (Hu, 1988). It should be noted that the presented
results are for a rectangular cross-section with a height-to-width ratio equal to 0.5 and �g0 � 0:01 at the
middle. The span length l is chosen as the characteristic length L.

Table 2

Convergence of frequency parameters (o 2L 4 rA0/EI0)
1/4 for a semi-elliptic curved beam with a varying cross-section using 16 el-

ements

Mode (K+ 1) in Eq. (5)
(J+ 1) in Eq. (7)

Suzuki et al. (1986)

10 20 30

1 10 1.71087 1.71087 1.71087 1.71129

15 1.71087 1.71087 1.71087

2 10 2.66353 2.66353 2.66353 2.66503

15 2.66353 2.66353 2.66353

3 10 3.72849 3.72849 3.72849 3.73248

15 3.72849 3.72849 3.72849

4 10 4.81584 4.81584 4.81584 4.82413

15 4.81584 4.81584 4.81584

5 10 5.90646 5.90646 5.90646 5.92170

15 5.90646 5.90646 5.90646

6 10 6.99428 6.99427 6.99427 7.01825

15 6.99428 6.99427 6.99427

Table 1

Convergence of frequency parameters (o 2L 4 rA0/EI0)
1/4 for a semi-elliptic curved beam with a varying cross-section using 8 el-

ements

Mode (K+ 1) in Eq. (5)
(J+ 1) in Eq. (7)

Suzuki et al. (1986)

10 20 30

1 10 1.71085 1.71088 1.71088 1.71129

15 1.71085 1.71087 1.71087

2 10 2.66358 2.66354 2.66354 2.66503

15 2.66358 2.66353 2.66353

3 10 3.72848 3.72850 3.72850 3.73248

15 3.72848 3.72849 3.72849

4 10 4.81629 4.81585 4.81585 4.82413

15 4.81629 4.81584 4.81584

5 10 5.90675 5.90647 5.90646 5.92170

15 5.90675 5.90646 5.90646

6 10 6.99516 6.99429 6.99427 7.01825

15 6.99516 6.99427 6.99427
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Fig. 5(a,b) show the variation of the frequency parameters ol 2(rA0/EI0)
1/2 with h/l for Z �=0.25, 0.5,

0.75 and 1, where h is the height of the parabolic arch under consideration. The frequency parameters
increase as Z � decreases, which indicates that the increase of the sti�ness is larger than the increase of
the mass of the beam when Z � is decreasing. This is similar to observations for in-plane vibration
(Huang et al., 1998c). However, the frequency parameters are not very sensitive to the change of Z �

except for higher modes with small h/l. The frequency parameters also decrease with the increase of h/l
except for higher modes with small h/l, which is somewhat di�erent from the behavior for in-plane
vibration (Huang et al., 1998c). There is modal crossing for the second anti-symmetric mode and the
third symmetric mode when h/l is less than 0.2, which indicates the possibility of one frequency
corresponding to two modes for certain values of h/l.

5. Transient analysis

To perform transient analysis, one needs to carry out the inverse of Laplace transform after obtaining
the solution for the displacement components and stress resultants at the desired positions in the
Laplace domain by applying the formulation in preceding sections. The e�cient numerical technique
developed by Durbin (1974) is adopted here and is combined with the fast Fourier transform technique
to accelerate the computation. The advantages of Durbin's scheme over others were investigated by
Narayanan and Beskos (1982). The procedure for computation implementation has been described in
detail by Huang et al. (1996), which will not recapitulated here.

5.1. Accuracy of the solution

To con®rm the high accuracy of the proposed solution, a comparison is made with the normal mode
solution for a simply supported uniform circular curved beam subjected to a moving loading with
constant magnitude and speed. For a circular curved beam with boundary conditions of zero out-of-
plane displacement u, twist angle f, and bending moment Mz at the ends, it is easy to obtain the natural
frequency and mode shapes in terms of a closed form solution (Hung, 1998). The geometrical properties
of the curved beam with square cross-section under consideration are R= 50 m, opening angle=308
and 1=�g0 � 70. The material properties are Poisson's ratio=0.3 and

���������
E=r
p � 3000 m=sec. The loading

function is de®ned as

Pp�t� � p0d�Sÿ vt�, �17�
where p0 is set equal to EA0/R in this case, and v is the moving velocity of the load. It should be noted
that the characteristic length (L ) is set equal to R.

Table 3

Comparison of nondimensional frequency parameters [(o 2R 4(rA/EIz ))
1/4] for a circular beam obtained using di�erent methods

Mode
(o 2R 4(rA/EIz ))

1/4

Present Irie et al. (1980b)

1 3.13412 3.134

2 5.02223 5.022

3 5.58418 5.584

4 6.73358 6.734
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Fig. 5. (a) Variation of o l2
������������������
rA0=EI0
p

with h/l for ®xed±®xed parabolic arches with �g 0 � 0:01 (1st symmetric and anti-symmetric

modes); (b) Variation of o l2
������������������
rA0=EI0
p

with h/l for ®xed±®xed parabolic arches with �g 0 � 0:01 (2nd and 3rd symmetric modes and

2nd anti-symmetric mode).
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Fig. 5 (continued).
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The following nondimensional stress resultants are introduced for the numerical results shown herein:

Q� � Q

kGA0
, M�z �

MzL

EI0
, M�t �

MtL

C0
: �18�

The response histories for �u , Q � and M�z at the middle of the beam are shown in Fig. 6, in which lc is
de®ned as being equal to the total arc length. The numbers of modes used to obtain the maximum
responses with four-signi®cant-®gure convergence (expect for Q �) are given in parentheses. As can be

Fig. 6. Comparison of the present solution with a mode superposition solution for a curved beam subjected to a constant moving

loading.
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Fig. 7. The ratios of the maximum dynamic response to the maximum static response.
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seen, the present results match very well the modal superposition solution. It is worthwhile to mention
that the Gibb's phenomenon occurs at the modal superposition solution for shear force, so even 1000
modes could not provide as accurate a solution as the present method does.

5.2. Numerical results

To show the e�ects of the shape of the curved beam on the dynamic responses, we studied the
responses of the parabolic arches prescribed in the section with free vibration where Z �=0.5 and h/
l= 0.1, 0.2, and 0.3, subjected to a rectangular impulse at the middle. The span length l is set equal to
100 m, which is also chosen as the characteristic length of the beam. The material properties for the
arches are as follows: Poisson ratio=0.3 and

���������
E=r
p � 5000 m=sec. The ®rst ®ve natural frequencies can

be determined from Fig. 4. The impulse loading is described by

P�t� � P0

EA0 �g0
�U�tÿ 0:1� ÿU�tÿ 0:2��, �19�

where U(t ) is the unit step function, and P0

EA0 �g 0
is taken as 1 in the following numerical results.

Fig. 7 shows the dynamic e�ect caused by the rectangular impulse on the responses of displacement
and stress resultants for parabolic arches with di�erent h/l ratios, in which the vertical axis denotes the
ratios of the maximum dynamic responses at di�erent locations on the arch to the maximum static
responses. The dynamic e�ect increases as h/l decreases when the responses for displacement and
moments are considered. However, for the shear force response, the opposite trend is seen. From Fig. 7,
one can also ®nd that the maximum dynamic response of �u occurs at the middle while the maximum Q �

and M�z occur at the ends. The location for maximum M�t changes as h/l changes.

6. Concluding remarks

This paper has presented a systematic and accurate solution for the out-of-plane dynamic responses of
curved beams with arbitrary shapes and cross sections by incorporating the dynamic sti�ness method
with Laplace transform. The dynamic sti�ness matrix and equivalent nodal loading vector for curved
beams with arbitrary shapes and cross sections have been developed from a series solution using the
Frobenius' method. With a simple replacement of the Laplace transform parameter, an exact solution
for the free vibration analysis has been established. A convergent solution is always guaranteed either by
increasing the solution terms and geometry terms or by increasing the number of elements, so that even
the responses of the stress resultants are obtained with very high accuracy but without any numerical
di�culty.

The validity of the solution for free vibration analysis has been con®rmed through a convergent study
with comparison of the present results with the published data. The numerical results for a set of ®xed±
®xed parabolic arches with a varying cross-section as frequently seen in civil engineering design indicate
that the frequency parameters decrease as the ratio of height to span length increases.

The accuracy of the present method for transient response analysis has been demonstrated by
comparing it with the modal superposition method based on analysis of a simply-supported circular
curved subjected to a moving loading. Excellent agreement has been found between the results from the
two methods. Nevertheless, the Gibb's phenomenon has been observed in the modal superposition
solution but not in the present solution.

Parabolic arches with a variable cross-section with di�erent rise-to-span ratios have been used to
study the e�ects of shapes on dynamic responses. The dynamic e�ect of the applied rectangular impulse
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at the middle of the parabolic arch on the responses of displacement and moments increases with a
decrease of the rise-to-span ratio. However, the opposite trend is observed for the shear force response.

Although the demonstrated examples are quite simple and are single span, the presented solving
method can be directly applied to multiple-span curved beams. As a matter of fact, the developed
dynamic sti�ness matrix and equivalent nodal force vector can be combined with the dynamic sti�ness
matrixes for other types of elements to accurately analyze the responses of complex systems like arch
bridges and space frames with curved members. Furthermore, the present method can also be applied to
solve beams with visco±elastic material using the correspondence principle.
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